FISEVIER

Contents lists available at ScienceDirect

# **Materials Letters**

journal homepage: www.elsevier.com/locate/matlet



# A novel application of iron oxide nanoparticles for detection of hydrogen peroxide in acid rain

Jie Zhuang <sup>a,c</sup>, Jinbin Zhang <sup>a,c</sup>, Lizeng Gao <sup>a</sup>, Yu Zhang <sup>b</sup>, Ning Gu <sup>b</sup>, Jing Feng <sup>a</sup>, Dongling Yang <sup>a</sup>, Xiyun Yan <sup>a,\*</sup>

- a National Laboratory of Biomacromolecules, and China-Japan Joint Laboratory of Structural Virology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
- <sup>b</sup> State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
- <sup>c</sup> Graduate University of Chinese Academy of Sciences, Beijing, 100049, China

#### ARTICLE INFO

Article history: Received 13 March 2008 Accepted 14 May 2008 Available online 21 May 2008

Keywords: Magnetic nanoparticles Catalyst H<sub>2</sub>O<sub>2</sub> determination

## ABSTRACT

Determining the concentration of hydrogen peroxide  $(H_2O_2)$  is of great importance in food, pharmaceutical, environmental and clinical analyses. Horseradish peroxidase (HRP), an enzyme specifically catalyzing the oxidative reaction of  $H_2O_2$  to develop color reaction, has been widely used for measuring  $H_2O_2$  concentration. However, owing to the instability and high cost of this enzyme, discovering efficient mimics of peroxidase has been important to conquer these disadvantages of protein catalysts. Recently we have found that  $Fe_3O_4$  magnetic nanoparticles  $(Fe_3O_4 \text{ MNPs})$  possess intrinsic peroxidase-like activity, which can catalyze oxidation of various peroxidase substrates in the presence of  $H_2O_2$ . Based on this finding, we developed a spectrometric method using  $Fe_3O_4 \text{ MNPs}$  as a catalyst to determine  $H_2O_2$  in rainwater. Our data show that the  $Fe_3O_4 \text{ MNPs}$  are efficient catalysts to determine  $H_2O_2$  in rainwater. Compared to HRP, the  $Fe_3O_4 \text{ MNPs}$  are reusable and economical and these characteristics make the particles a board range of applications in determining  $H_2O_2$  in the rainwater.

© 2008 Elsevier B.V. All rights reserved.

# 1. Introduction

Acid rain (pH<5.5), causing the death of fish and plant, is a serious environmental problem over the world. High acidity of the rain results from the oxidation reaction of H<sub>2</sub>O<sub>2</sub> with dioxide and nitrogen oxides in atmosphere dissolved in hydrometeors to H<sub>2</sub>SO<sub>4</sub> [1]. Thus, the concentration of H<sub>2</sub>O<sub>2</sub> is an important indicator providing information of the environment. In order to accurately and rapidly determine H2O2 in rainwater, many analytical methods have been developed including titrimetric [2], fluorometric [3,4], chemiluminescence [5], electrochemical [6] and spectrophotometric [7,8] methods. Among these methods, HRP is widely used for catalyzing the oxidation of various hydrogen donor in the presence of H<sub>2</sub>O<sub>2</sub>. Although the HRP is a specific and efficient reagent, its instability and high cost restrict the application. In the past decades, some HRP mimics have been developed, such as metal porphyrin compound. small biomolecules like hemin and hematin, porphyrin and cyclodextrin [9–12], and applied in determining H<sub>2</sub>O<sub>2</sub> in rainwater. However, the catalytic activity of these HRP mimetics is lower than natural HRP. Therefore, it is highly desirable to develop new mimetic enzymes or to further enhance the activity of existed mimetic enzymes.

Recently we found that the  $Fe_3O_4$  MNPs possessed an intrinsic peroxidase-like activity [13]. Based on this finding, we carried out the potential application of the  $Fe_3O_4$  MNPs, as a new catalyst, for the determination of  $H_2O_2$  in rainwater and developed  $Fe_3O_4$  MNPs-based

spectrometric method. Our data showed that this new method is efficient to determine  $H_2O_2$  in rainwater.

#### 2. Experimental section

# 2.1. Synthesis of Fe<sub>3</sub>O<sub>4</sub> MNPs

 $Fe_3O_4$  MNPs with diameters about 30 nm were prepared according to the method of Jiang [14]. Briefly, we dissolved  $FeSO_4$ · $7H_2O$  (0.07 M) and  $FeCl_3$ · $6H_2O$  (0.14 M) in deionized water. Then 3.5 M ammonium hydroxide (NH<sub>4</sub>OH) was dropped into the mixture solution with

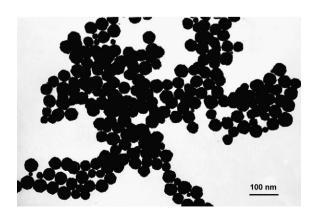



Fig. 1. TEM image of Fe<sub>3</sub>O<sub>4</sub> MNPs with an average diameter of 30 nm.

<sup>\*</sup> Corresponding author. Tel.: +86 10 6488 8583; fax: +86 10 6488 8584. E-mail address: yanxy@sun5.ibp.ac.cn (X. Yan).

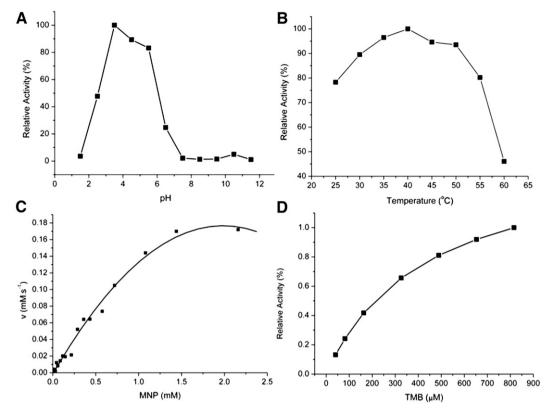



Fig. 2. The H<sub>2</sub>O<sub>2</sub> determination efficiency dependent on pH (A), temperature (B), initial concentrations of Fe<sub>3</sub>O<sub>4</sub> MNPs (C) and TMB substrate (D).

violently stirring. The  $Fe_3O_4$  MNPs were washed immediately with water for 5 times and then ethanol for 2 times.

# 2.2. Determination of $H_2O_2$ in rainwater

The experiments for Fe $_3$ O $_4$  MNPs catalysis were carried out in 1.5 ml tube with 816  $\mu$ M TMB and 2.9  $\mu$ M H $_2$ O $_2$  in 500  $\mu$ l rainwater, the reactions were initiated by adding 1.44 mM Fe $_3$ O $_4$  MNPs. The reaction produced a blue color and was measured by a Bio-Rad Microplate Reader 550 at 652 nm.

# 3. Results and discussion

#### 3.1. Preparation and characterization of Fe<sub>3</sub>O<sub>4</sub> MNPs

Firstly, we prepared  $Fe_3O_4$  MNPs using the method of Jiang [14]. The size and shape of  $Fe_3O_4$  MNPs were examined by TEM. It was showed that the particles appeared spherical

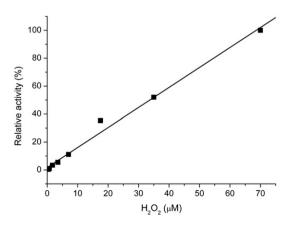



Fig. 3. The linear range of the reaction of Fe<sub>3</sub>O<sub>4</sub> MNPs in determination H<sub>2</sub>O<sub>2</sub>.

with an average diameter of 30 nm (Fig. 1). Upon observation, we could also found that the size distribution of Fe $_3$ O $_4$  MNPs was significantly restricted in a narrowed range.

# 3.2. The $H_2O_2$ determination is pH and temperature dependent

In order to utilize the catalytic characterization of  $Fe_3O_4$  MNPs in determining of  $H_2O_2$  concentration in rainwater, we first tested whether the catalytic activity of  $Fe_3O_4$  MNPs were dependent on pH and temperature. The result suggested that the optimal pH of the  $Fe_3O_4$  MNPs catalysis was about pH 3.5 (Fig. 2A). However, the activity was remarkably decreased at pH 6 and completely lost at pH 8, which was consistent with the feature of HRP [13].

In addition, we measured the catalytic activity of Fe $_3O_4$  MNPs under a range of temperatures from 25 to 60 °C (Fig. 2B). Data inferred that the relative activity of particles remained higher than 80% until heating to 60 °C. The optimal temperature was approximately 37 °C. This evidence implied that the Fe $_3O_4$  MNPs had a broad application in determining  $H_2O_2$  in acid rain under different temperatures.

#### 3.3. Optimal concentration of Fe<sub>3</sub>O<sub>4</sub> MNPs and TMB substrate in H<sub>2</sub>O<sub>2</sub> determination

To test the optimal concentration of  $Fe_3O_4$  MNPs for  $H_2O_2$  determination, a range of  $Fe_3O_4$  concentration from 0 to 2.16 mM was used in the reaction system. The result

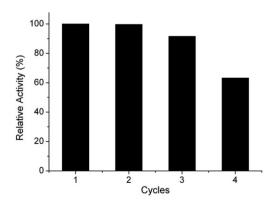



Fig. 4. Reusability of the Fe<sub>3</sub>O<sub>4</sub> MNPs in H<sub>2</sub>O<sub>2</sub> determination.

Table 1 Results of the analyses of H<sub>2</sub>O<sub>2</sub> in rainwater samples

| Sample      | Detected (mM) | Added (mM) | Found (mM) | Recovery (%) |
|-------------|---------------|------------|------------|--------------|
| Rainwater 1 | 5.2(±2.9%)    | 2.9        | 2.8        | 96           |
| Rainwater 2 | 2.8(±3.2%)    | 2.9        | 3          | 97           |

inferred that the initial velocity was increased along with the increase of Fe<sub>3</sub>O<sub>4</sub> MNPs concentration from 0 to 1.44 mM. After the concentration of Fe<sub>3</sub>O<sub>4</sub> MNPs reached 1.44 mM, the initial velocity was no longer increased (Fig. 2C). Therefore, we took 1.44 mM as optimal concentration of Fe<sub>3</sub>O<sub>4</sub> MNPs for the following reactions.

To know whether the catalytic activity of the Fe<sub>3</sub>O<sub>4</sub> MNPs was dependent on TMB concentration, the experiments were performed by adding a range of TMB concentrations from 40.8  $\mu$ M to 816  $\mu$ M (Fig. 2D). The results indicated that the activity of Fe<sub>3</sub>O<sub>4</sub> MNPs was TMB concentration dependent and with the increase of TMB concentration the Fe<sub>3</sub>O<sub>4</sub> MNPs activity increase and reached the maximal at 816 uM.

#### 3.4. Performance of the system for H<sub>2</sub>O<sub>2</sub> measurement

Under the optimal conditions described above, we first obtained the incubation time of becoming the maximum and constant absorbance of this reaction. In this method, the absorbance at 652 nm reached a plateau after 30 min which was comparable to the previous method [15]. Thus, we chose 1 h as a sufficient incubation time further to investigate.

To test the linear range of Fe<sub>3</sub>O<sub>4</sub> MNPs in H<sub>2</sub>O<sub>2</sub> determination, all experiments were carried out under the optimal conditions. The reactions were initiated by adding different concentration of H<sub>2</sub>O<sub>2</sub>. The calibration graph of the absorbance versus the H<sub>2</sub>O<sub>2</sub> concentration was linear in the range from 0 to 70 μM (Fig. 3) and the limit of detection (LOD) was  $1.75 \times 10^{-7}$ . To the best of our knowledge, some enzymes (like HRP) or mimetic enzymes (like Hb) used for determining H<sub>2</sub>O<sub>2</sub> almost showed the linear range from  $0-100 \,\mu\text{M}$  and the LOD of these catalysts was around  $1 \times 10^{-7} \, [4]$ . Thus, these results demonstrated that the Fe<sub>3</sub>O<sub>4</sub> MNPs could be used as a promising catalyst, which had both advantages of a wide linear range and a low detection limit.

#### 3.5. Fe<sub>3</sub>O<sub>4</sub> MNPs are reusable

H<sub>2</sub>O<sub>2</sub> determination experiments were repeated for 4 rounds using the same MNPs to examine the reusability of Fe<sub>3</sub>O<sub>4</sub> MNPs. After each experiment the MNPs were simply collected by a magnet then regenerated by sonication and washing with deionized water. After 3 rounds of recycle, the MNPs still remained almost 100% catalytic activity (Fig. 4). Due to the low expense of MNPs preparation, the characteristic of reusability further decreased the cost per treatment.

# 3.6. Application of Fe<sub>3</sub>O<sub>4</sub> MNPs in determining H<sub>2</sub>O<sub>2</sub> in rainwater

The system was applied to determine H<sub>2</sub>O<sub>2</sub> concentration in rainwater samples collected on different days in Institute of Biophysics, Chinese Academy of Science (Beijing, China). Before analysis, the rainwater samples were treated through 0.22 µM filter. In order to evaluate the validity of the proposed method for determination of  $H_2O_2$  in rainwater, recovery studies were carried out using standard addition method. All the experiments were carried out under the optimal conditions. As shown in Table 1, the recovery of this system was higher than 95%, which indicated that the Fe<sub>3</sub>O<sub>4</sub> MNPs were suitable to determine the concentration of H<sub>2</sub>O<sub>2</sub> in rainwater.

#### 4. Conclusion

Our results demonstrate that Fe<sub>3</sub>O<sub>4</sub> MNPs can be used as a promising catalyst to determine H<sub>2</sub>O<sub>2</sub> in rainwater. The linear range and the limit of determination are comparable with HRP. There are significant advantages of using Fe<sub>3</sub>O<sub>4</sub> MNPs in determining H<sub>2</sub>O<sub>2</sub>: firstly, the Fe<sub>3</sub>O<sub>4</sub> MNPs are cheap and efficient; moreover, the Fe<sub>3</sub>O<sub>4</sub> MNPs could be recycled and regenerated; thirdly, the Fe<sub>3</sub>O<sub>4</sub> MNPs were magnetic controllable. These attractive features endowed them broad applications in determining H<sub>2</sub>O<sub>2</sub> in rainwater by constructing a system of biosensor.

## Acknowledgement

This work is partly supported by grants from the NSFC foundation (No. 90406020), the Chinese Academy of Sciences (kjcx2-sw-h12), and the National 973 project (2005CB724702).

#### References

- [1] Fung CS, Misra PK, Bloxam R, Wong S. Atmos Environ 1991;25A:411-23.
- Hurdis EC, Romeyn Jr H. Anal Chem 1954;26:320.
- Kelly TA, Christian GD. Anal Chem 1981;53:2110-4.
- Xu CL, Zhang ZJ. Anal Chem 2001;17:1449-51.
- Hool KH, Nieman TA. Anal Chem 1988;60:834-7.
- Arjsiriwat S, Tanticharoen M, Kirtikara K, Aoki K, Somasundrum M. Electroanal Chem 2000;2:441-4.
- Huang YP, Cai RX, Mao LY, Liu ZH, Huang HP. Anal Sci 1999;15:889-94.
- Wang F, Wu YZ, Wu XW, Shong SS, Ci YX. J Anal Chem 1992;344:556-8.
- Zhu QZ, Liu FH, Xu JG, Su WJ, Huang JW. Anal Chem 1998;362:537–40.
- Zhang GF, Dasgupta PK. Anal Chem 1992;64:517-22.
- Liu ZH, Cai RX, Mao LY, Huang HP, Ma WH. Analyst 1999;124:173-6.
- Zhu CQ, Li DH, Zheng H, Zhu QZ, Chen QY, Xu JG. Anal Sci 2000;16:253–6. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, et al. Nat Nanotech 2007;9:577–81.
- [14] Jiang WQ, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, et al. J Magnet Magnet Mater 2004:283:210-4
- [15] Odo J, Inomata Y, Takeya H, Miyanari S, Kumagai H. Anal Sci 2001;17:1425-9.