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Prediction of quaternary assembly of SARS coronavirus peplomer
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Abstract

The tertiary structures of the S1 and S2 domains of the spike protein of the coronavirus which is responsible of the severe acute
respiratory syndrome (SARS) have been recently predicted. Here a molecular assembly of SARS coronavirus peplomer which
accounts for the available functional data is suggested. The interaction between S1 and S2 appears to be stabilised by a large hydro-
phobic network of aromatic side chains present in both domains. This feature results to be common to all coronaviruses, suggesting
potential targeting for drugs preventing coronavirus-related infections.

© 2004 Elsevier Inc. All rights reserved.
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We are now in a post-epidemic period of the severe
acute respiratory syndrome (SARS), caused by the coro-
navirus henceforth called SARS-CoV. Nevertheless,
since the mode of transmission, spread, and mechanisms
of virulence of SARS-CoV are not fully understood, all
the possible weapons that Immunology and Pharmacol-
ogy can provide should be prepared against the virus to
defend ourselves better when this virus will rear again its
infecting crown [1].

For a pharmacological approach the structural char-
acterisation of the molecular repertoire of the target
organism is of fundamental importance . In this respect,
not much is available yet for SARS-CoV, as only two

* Corresponding author. Fax: +39 577 234903.
E-mail address: niccolai@unisi.it (N. Niccolai).

0006-291X/$ - see front matter © 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.bbrc.2004.10.156

crystallographic determinations [2,3] and few predictive
models [4-6] are so far available.

Among the above-mentioned structures, the pre-
dicted structures of S1 and S2 domains of the viral spike
glycoprotein [5] can represent a rational basis to design
specific antiviral drugs and diagnostic kits. This protein,
indeed, has been found to be the viral membrane protein
responsible of SARS-CoV cell entry by interacting with
the receptor of the target cell and causing subsequent
virus-cell fusion [7].

SARS-CoV ultra-high resolution images have been
obtained [8] by scanning electron microscopy, SEM,
which indicate that the spike glycoprotein is organised
as a trimer. This finding offers a fundamental hint
to investigate the overall assembly of the outer viral
particles, peplomers, which give that characteristic
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crown-like aspect to the virion, therefore classified in the
coronaviridae family [9].

A stable quaternary structure without covalent cross-
linking has been proposed, in general, for coronavirus
peplomers [7]. This feature is consistent with our previ-
ous structural predictions, as no Cys residue without a
corresponding cystine-bridged counterpart is present in
both models of SARS-CoV spike glycoprotein domains.

The distribution of N-glycosylation and mutation
sites has also been considered for a fine-tuning of the
peplomer structural features with functional data.

Materials and methods

Peplomer model building has been performed on the basis of the
structures of the S1 and S2 domains of the SARS-CoV spike protein
which are available in the Protein Data Bank [10]: the structure models
1Q4Z and 1U4K have been used for S1 and S2, respectively. Docking
of the two domains has been manually performed and the reliability of
each of the possible peplomer assemblies has been discussed according
to the Prosall software package [11]. Accordingly, quaternary struc-
tures exhibiting the lowest energies for atom pair and solvent inter-
action were considered for further optimisation by using molecular
dynamics simulations with Gromacs [12]. After a PROCHECK anal-
ysis of the final refined peplomer structure it has been deposited in the
Protein Data Bank with the ID code 1T7G. All displays of structures,
as well as exposed surface area (ESA) calculations, were carried out
with the program MOLMOL [13].

Results and discussion

SARS coronavirus peplomer shape and dimensions
are now well defined by recent SEM determinations
[8], and the club-shaped protrusions of a trimer glyco-
protein appear to extend itself approximately 200 A
from the virion envelope membrane with a maximum
width of 100-200 A.

It has been shown that coronaviruses present the Sl
domain as the globular head of the spike with receptor-
binding activity and that the S2 domain is present in
the stalk portion of the spike [14]. In this respect, the fact
that SEM images clearly suggest that in the viral peplo-
mers the spike glycoprotein is present as a trimer [8] re-
sults to be a fundamental starting point for our model
building procedure. This is also in accord with the gen-
eral rule that coronavirus spike proteins form three-
stranded left-handed coiled-coils. Moreover, the fact that
the 320-518 fragment of S1 domain has been identified as
the SARS-CoV peplomer binding site to the ACE2 cellu-
lar receptor [15] implies that the residues which are the
most involved in the interaction with the receptor have
to be positioned in the S1 external top side.

These first morphological and functional hints have
been coupled to the results of a systematic search for
surface hot spots of S1 and S2 SARS-CoV domains,
i.e., potential drug binding and/or protein—protein inter-

action sites, to gain structural information on the rela-
tive orientations of these SI and S2 domains. This
analysis has been performed on the basis of S1 and S2
molecular models available [5]. Furthermore, a Clustal
W [16] analysis of all the coronavirus spike proteins
present in the SwissProt protein sequence data bank
has been carried out and 236 sequences have been found
to be compared with the one of SARS-CoV, SwissProt
Accession No. P59594, originally used for our model
building of the S1 and S2 domains of the S glycoprotein.

To build the molecular model of the SARS-CoV pep-
lomer, the modelled structures of its S1 and S2 domains
have been used together with homology criteria with the
quaternary assembly of other viral systems [14,17,18].

In the first step of the model building procedure, the
positioning of each of the three S2 in respect to the oth-
ers was carried out by assembling the long a-helix span-
ning residues 904-968, constituting the first heptad
repeat (HR1, according to the prediction by Multicoil
[19]), in a three-stranded, left-handed coiled-coil. The
three HR1s were first aligned parallel along the major
axis, and then rotated about the center of mass of the
same amount to get the amino acids of positions a and
d justaxposed. The structure was refined by minimizaton
followed by a simulated annealing dynamics.

In the second step, possible interfaces between the S1
and S2 domains, and among the S1 + S2 components,
needed for the assembly of a trimeric structure, have
been systematically searched.

Thus, in spite of the limited sequence homology,
ranging from 20.39% to 27.63%, found for all these
spike glycoproteins, in the S1 hydrophobic pocket
delimited by F187, F334, F253, and W423 a high level
of residue conservation is present. In this respect
SARS-CoV, when compared with all the other coronav-
iruses, is unique in its W/F swapping between position
253 and 423, see Table 1. From Table 1 it can also be

Table 1
Amino acid occupancy of a possible strong binding site between S1
and S2 domains

Coronavirus ~ Number 187 253 334 423 782 784

of sequenced

genomes
Human sars 36 F F F w L F
Murine 16 F w FV Y LV F
Porcine(1) 1 F W A% Y L F
Porcine(2) 16 F w A% Y L F
Porcine(3) 30 F w v Y L F
Porcine(4) 7 F W A% Y L F
Bovine 26 Y w v Y L F
Human 24 F w A% Y LI F
Equine 1 Y W VvV Y L F
Avian 112 F W Vv Y LLV F
Feline 54 F W Vv Y L F
Canine 8 Y w \% Y L F

(1), Hemagglutinating encephalomyelitis virus; (2), transmissible gas-
troenteritis virus; (3), respiratory virus; and (4), epidemic diarrhea virus.
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noticed that in the S2 domain the hydrophobic residues
L803 and F805, totally conserved among the SARS-
CoV available genomes and fully exposed in the S2
molecular model, are located in a sequence position
where only hydrophobic residues are found.

The large difference in the pathologies induced by
coronavirus infections suggests that a role for these
two hydrophobic moieties of S1 and S2 domains might
be attributed to the peplomer assembly rather than to
the interaction with the host cell. Residues F187,
F334, F253, and W423 could, indeed, form the Sl
hydrophobic pocket where S2 puts its hydrophobic fin-
ger formed by L803 and F805 residues.

The remarkable agreement between the steric require-
ments for the S1-S2 interaction and the surface position
of the proposed Sl binding site to the ACE2 receptor
points towards a finite orientation of these peplomeric
domains, see Fig. 1. From this starting point, to recom-
pose the full SARS-CoV peplomer from its components,
we used the following simple criteria: (i) orienting each
S1 and the S2 stalk domains so that they could dock
through the interaction described above, (ii) keeping
all the potential N-glycosylation sites as surface exposed
as possible, and (iii) positioning the largest hydrophobic
surface patches in subunit interfaces. The fact that in the
S2 trimer the side chains of L803 and F805 residues are
still surface accessible after the coiled coil formation
supports the hypothesis that the peplomer reaches its
structural stability through the hydrophobic interactions
of the S1 pocket with the S2 finger, as depicted in Fig. 2.
Then, geometrical and energetic considerations con-
verge towards possible solutions for the structure of
the SARS-CoV peplomer. In Fig. 3, three molecules of
S1-S2 adducts are positioned after their assembly, in a
way which is consistent with the overall size of the pep-

Fig. 1. The S1 domain oriented to fit the morphological SEM images
of [8]. In yellow and in red the potential N-glycosylation sites and the
residues involved in the interaction with ACE2 [15] are, respectively,
colored. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)

Fig. 2. A detailed representation of the S1 (dark blue) hydrophobic
pocket interacting with the S2 (pale blue) finger. (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this paper.)

Fig. 3. Three spike glycoproteins form the peplomer of SARS-CoV
coronavirus.

lomer [8]. It should be noted also that, among the muta-
tions which have been found in the SARS-CoV spike
protein region of all the available genomes, see Table
2, nothing occurs in the S1-S2 interfaces here identified.
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Table 2
Mutation site topology occurring in all the available strains of SARS-CoV spike glycoprotein
aa Mutation topology TOR2 BJO1 HZS2 C CUHK LC2 SOD HZS2 FC GZ A HGZ8L1 A
49 Exposed top S S S S S S L S
74 Exposed top H H H H H H H F
75 Exposed top T T T T T T R T
77 Exposed top G D D G G G D D
239 Partially exposed side S S S S S S S L
244 Buried 1 T T I 1 I T T
311 Exposed side G G G G G G G R
344 Partially exposed side K K K K K K K R
577 Buried, interface S1-S1 A S S S S S S S
778 Buried Y Y Y Y Y Y D D
1148 Exposed down L L L L F F L L
1179 Buried L L L L L L L F
1208 Non-modelled A A A v A A A A

For the S2 moiety of the S glycoprotein, composed by
one well-structured moiety containing the HR1 and an-
other subdomain spanning the 1027-1195 segment of S
glycoprotein and containing the HR2 (residues 1148-
1193), ambiguity remains on the structure and on the
location of the second in the peplomer structure. Such
subdomain is critical for the interaction with the viral
envelope, due to its proximity to the trans-membrane re-
gion and for the overall structure stability of the peplo-
mer. In fact, a peptide reproducing the C terminal
heptad repeat fragment 1161-1187 of S2 exhibits antiv-
iral activity [20].

Thus, 94% of SARS-CoV peplomer structure has
been modelled and deposited with the pdb ID code
1T7G. Accordingly, the most interesting regions to be
reproduced in synthetic peptides for mimotope design
have been found, as well as the hydrophobic sites
distributed at the S1/S1, S2/S2, and S1/S2 interfaces
for targeting of potential antiviral drugs (patent
RM2004A000162). The fact that we could not model
the 665-736 sequence of the S glycoprotein does not
interfere with the exposed surface on top of the SARS-
CoV peplomer, as the missing modelled moiety can be
identified in a peplomer lateral region, where a deep
groove is found. This peplomer region could be filled
by the non-modelled part of the sequence, which consis-
tently exhibits an extensive hydrophobic character [21].
In the present peplomer model, the so-called HR1 and
HR2 moieties, i.e., the N and C terminal heptad repeat
regions, respectively, spanning the sequences 904-975
and 1148-1193, are not bound together. This feature is
consistent with the extensive conformational change,
necessary for this and several other viruses for the fuso-
genic mechanism [22-24].

Then, on the basis of the obtained peplomer struc-
ture, correlations can be explored between viral genome
mutations and possible interactions with the host cell
receptor(s). As reported in Table 2, on the basis of the
proposed quaternary assembly a systematic topological
analysis of mutation sites occurring in the 36 genomes

so far available for the SARS-CoV spike glycoprotein
has been done. It can be observed that (i) most of the
mutations are found in exposed sites; (ii) the only
mutation involving a relevant position for the receptor
interaction, i.e., 344 K/R, is a conservative one; and
(iii) non-conservative substitutions are found in the
buried positions of residue 778 with Y/D, which do
not induce sterical conflicts.

The structural characterisation of SARS-CoV spike
glycoprotein domains, here described, suggests also a
general scheme for the peplomer assembly of all coro-
naviruses. In fact, from the sequence alignment of the
spike glycoproteins of all known coronaviruses, as
shown in Table 1, it appears that the above-described
hydrophobic interaction between the S1 pocket and
the S2 finger is very conserved. It could, therefore, rep-
resent a very critical region for the interaction between
S1 and S2 domains for all coronaviruses, opening new
perspectives for the design of small molecules that can
efficiently interfere with the viral replication. Hence,
SARS as well as all the other members of the coronavir-
idae family could put down their infecting crown with
the same type of antiviral drug, which could protect
from possible transmission of coronavirus infections
from wild animals.
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