当前位置:  首页 >> 最新重要论文

最新重要论文

Structural insight into H4K20 methylation on H2A.Z-nucleosome by SUV420H1, Mol Cell, 2 Aug 2023

发布时间:2023年08月02日

Molecular Cell, 2 August, 2023, DOI:https://doi.org/10.1016/j.molcel.2023.07.001

Structural insight into H4K20 methylation on H2A.Z-nucleosome by SUV420H1

Li Huang, Youwang Wang, Haizhen Long, Haoqiang Zhu, Zengqi Wen, Liwei Zhang, Wenhao Zhang, Zhenqian Guo, Longge Wang, Fangyi Tang, Jie Hu, Keyan Bao, Ping Zhu, Guohong Li, Zheng Zhou

Abstract

DNA replication ensures the accurate transmission of genetic information during the cell cycle. Histone variant H2A.Z is crucial for early replication origins licensing and activation in which SUV420H1 preferentially recognizes H2A.Z-nucleosome and deposits H4 lysine 20 dimethylation (H4K20me2) on replication origins. Here, we report the cryo-EM structures of SUV420H1 bound to H2A.Z-nucleosome or H2A-nucleosome and demonstrate that SUV420H1 directly interacts with H4 N-terminal tail, the DNA, and the acidic patch in the nucleosome. The H4 (1–24) forms a lasso-shaped structure that stabilizes the SUV420H1-nucleosome complex and precisely projects the H4K20 residue into the SUV420H1 catalytic center. In vitro and in vivo analyses reveal a crucial role of the SUV420H1 KR loop (residues 214–223), which lies close to the H2A.Z-specific residues D97/S98, in H2A.Z-nucleosome preferential recognition. Together, our findings elucidate how SUV420H1 recognizes nucleosomes to ensure site-specific H4K20me2 modification and provide insights into how SUV420H1 preferentially recognizes H2A.Z nucleosome.

文章链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(23)00515-4

相关报道:/kyjz/zxdt/202308/t20230801_6852931.html

 

 

    附件下载: